▲ 作者:Wenqiang Zhang, Hong Jiang, Yikuan Liu, Yue Hu, Athulya Surendran Palakkal, Yujie Zhou, et al.
▲ 链接:
https://www.nature.com/articles/s41586-024-08447-0
▲ 摘要:
通过构建具有化学成分空间调制的超晶格结构,可创建具有可定制周期性电势景观和可调谐电子和光学特性的人造材料。具有一维可设计电位调制的传统半导体超晶格实现了高电子迁移率晶体管和量子级联激光器。
最近,通过多尺度构建单元的自组装或引导组装,人们构建了一组多样化的超晶格,包括零维纳米簇和纳米颗粒、一维纳米棒和纳米线、二维纳米层和纳米片,以及混合二维分子组装体。这些自组装超晶格具有二维或三维的周期性结构调制,但由于组成单元之间界面处不可避免的结构无序,通常缺乏原子精度。
研究组报告了由零维、一维和二维构建单元的周期性排列组成的多维单晶超晶格的一锅合成法。利用锆(IV)金属有机骨架作为主模板,通过配位辅助组装策略实现金属卤化物亚晶格的定向成核和精确生长,他们合成了一系列单晶多孔超晶格。
单晶X射线晶体学和高分辨率透射电子显微镜清晰地分辨出具有确定性原子坐标的高阶超晶格结构。用选定的胺分子进一步处理可产生具有高度可调光致发光和手性光学性质的钙钛矿样超晶格。
该研究创建了一个高阶单晶多孔超晶格平台,为定制传统晶体固体无法实现的电子、光学和量子特性提供了机遇。
▲ Abstract:
The construction of superlattices with a spatial modulation of chemical compositions allows for the creation of artificial materials with tailorable periodic potential landscapes and tunable electronic and optical properties. Conventional semiconductor superlattices with designable potential modulation in one dimension has enabled high-electron-mobility transistors and quantum-cascade lasers. More recently, a diverse set of superlattices has been constructed through self-assembly or guided assembly of multiscale building units, including zero-dimensional nanoclusters and nanoparticles, one-dimensional nanorods and nanowires, two-dimensional nanolayers and nanosheets, and hybrid two-dimensional molecular assemblies. These self-assembled superlattices feature periodic structural modulation in two or three dimensions, but often lack atomic precision owing to the inevitable structural disorder at the interfaces between the constituent units. Here we report a one-pot synthesis of multi-dimensional single-crystalline superlattices consisting of periodic arrangement of zero-, one- and two-dimensional building units. By exploiting zirconium (IV) metal–organic frameworks as host templates for directed nucleation and precise growth of metal-halide sublattices through a coordination-assisted assembly strategy, we synthesize a family of single-crystalline porous superlattices. Single-crystal X-ray crystallography and high-resolution transmission electron microscopy clearly resolve the high-order superlattice structure with deterministic atomic coordinates. Further treatment with selected amine molecules produces perovskite-like superlattices with highly tunable photoluminescence and chiroptical properties. Our study creates a platform of high-order single-crystalline porous superlattices, opening opportunities to tailor the electronic, optical and quantum properties beyond the reach of conventional crystalline solids.