历任荷兰皇家科学院胡布勒⽀研究所所长,荷兰皇家科学院院长,乌德勒支玛西玛公主小儿肿瘤中首席席科学家/研究主任。并兼任国际分化学会(ISD)主席,美国癌症研究协会理事,国际干细胞研究学会(ISSCR)主席,罗氏控股有限公司非执行董事等重要职务,2020年起加盟丹望医疗科技(杭州)有限公司任首席战略官。
国际类器官研究鼻祖,首次发现肠道干细胞标志物Lgr5,建立体外3D类器官培养体系,开创了类器官作为疾病研究模型的时代。发表SCI论⽂600多篇,引用次数95000次,h指数为253(Scopus)。Hans是Cell,EMBO,Gastroenterology, Cell Stem Cell等多个国际顶级杂志的编辑委员会成员。
荣获多个生物医学领域国际奖项,2004年获得影响力仅次于诺贝尔奖的瑞士日内瓦Louis-Jeantet 医学奖,2013年获得被誉为“科学界奥斯卡”的生命科学突破奖。并在Louis-Jeantet奖,加拿大盖尔德纳奖,生命科学突破奖,AACR国际癌症研究奖,美国国家科学院科瓦连科奖章等重要国际奖项中担任评审。
研究方向
Wnt 信号调控基因表达。首次发现 Lgr5 作为成体干细胞标记物,并且这些 干细胞可以培养成类器官,并且无限扩增。在体外培养健康或者疾病组织的微 型器官,用于基础研究、疾病诊断和再生医学。
获得奖项
2018 西班牙巴塞罗那欧洲科学院伊拉斯莫斯奖章
2017 德国之星与优异奖、东京高松公主优绩奖
2016 德国汉堡 Ilse&Helmut Wachter 奖、阿姆斯特丹 Swammerdam medaille
奖、德国柯尔柏欧洲科学奖、Kazemi 生物医学研究卓越奖、荷兰皇家科 学院院士奖
2015 ISSCR-McEwen 创新奖
2014 荷兰国家图标、Struyvenberg 欧洲临床研究学会(ESCI)奖、AACR 学院院士、马萨诸塞州综合医院癌症研究奖
2013 生命科学突破奖
2012 奈德兰狮子骑士勋章、Heineken 医学奖、美国胃肠病学会威廉.博蒙特
奖、巴黎癌症研究协会 LeopoldGriffuel 奖
2011 阿姆斯特丹科尔夫奖
2010 欧洲胃肠病联合会研究奖
2009 阿姆斯特丹威廉米娜女王荷兰癌症协会奖
2008 德国梅因堡癌症研究奖、约瑟芬.奈夫肯斯癌症研究奖
2005 纽约 Katheariine Berkan Judd 奖、法国“荣誉骑士勋章”、阿姆斯特丹科
学与社会奖
2004 瑞士日内瓦 Louis-Jeantet 医学奖
2001 荷兰研究理事会(NWO)斯宾诺莎奖、欧洲临床研究学会奖
2000 Catharijne 医学研究奖
担任奖项评审
2017 科瓦连科奖章(美国国家科学院)、邵逸夫奖(香港)、法兰基奎奖
(布鲁塞尔)
2015 保罗.詹森博士奖、AACR 国际癌症研究奖
2014 生命科学突破奖(旧金山)
2013-2015 加拿大盖尔德纳奖(多伦多) 2008-2015 Louis Jeantet 奖(日内瓦)
荣誉称号
2019 苏格兰国家科学与文学院爱丁堡皇家学会荣誉院士、伦敦皇家自然科学
学会外籍会员、纽约科学院院士
2017 德国 Orden 蓝马克斯勋章科学和艺术成员
2016 法国科学研究院院士
2014 美国国家科学院院士
2012 荷兰皇家科学与人文学会成员、美国艺术与科学研究院院士
2009 欧洲科学院院士
2000 荷兰皇家科学院(KNAW)院士
1999 欧洲分子生物学组织(EMBO)成员
名誉教授
上海复旦大学复旦类器官中心客座主任、澳大利亚墨尔本大学客座教授、以色 列雷霍沃特维兹曼研究所客座教授、香港大学杰出客座教授、TEFAF 肿瘤科主 任、中南大学客座教授
担任编辑委员会成员杂志
EMBO 、Gastroenterology 、Cell 、Genes & Develepment 、Stem Cell Reports、 Cell Stem Cell 、Annual Review of Cancer Biology
咨询顾问
巴塞尔罗氏控股有限公司非执行董事、阿姆斯特丹生命科学合作伙伴科学顾 问、乌德勒支 Merus 科学顾问委员会、国际干细胞研究学会(ISSCR)主席、纽 约卡里奥普科学咨询委员会、旧金山 Surrozen 科学顾问委员会、波士顿分贝治疗 学科学顾问委员会、伦敦弗朗西斯.克里克研究所科学顾问委员会、维也纳分子病 理研究所科学顾问委员会、美国癌症研究协会理事、阿姆斯特丹国家科学咨询委 员会 NKI-AVL、国际分化学会(ISD)主席、瑞士实验癌症研究所科学顾问委员 会。
关键发表文献
1) Hurlstone, A.F., et al., The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature, 2003. 425(6958): p. 633-7.
2) Baas, A.F., et al., Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 2004. 116(3): p. 457-66.
3) Clevers, H., At the crossroads of inflammation and cancer. Cell, 2004. 118(6): p. 671-4.
4) Haramis, A.P., et al., De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science, 2004. 303(5664): p. 1684-6.
5) Batlle, E., et al., EphB receptor activity suppresses colorectal cancer progression. Nature, 2005. 435(7045): p. 1126-30.
6) van Es, J.H., et al., Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 2005. 435(7044): p. 959-63.
7) Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80.
8) Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-7.
9) Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009. 457(7229): p. 608-11.
10) Clevers, H., Eyeing up new Wnt pathway players. Cell, 2009. 139(2): p. 227-9.
11) Sato, T., et al., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009. 459(7244): p. 262-5.
12) van der Flier, L.G., et al., Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 2009. 136(5): p. 903-12.
13) Snippert, H.J., et al., Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 2010. 327(5971): p. 1385-9.
14) Snippert, H.J., et al., Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 2010. 143(1): p. 134-44.
15) de Lau, W., et al., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011. 476(7360): p. 293-7.
16) Sato, T., et al., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature,
2011. 469(7330): p. 415-8.
17) Boj, S.F., et al., Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell, 2012. 151(7): p. 1595-607.
18) Clevers, H. and R. Nusse, Wnt/β-catenin signaling and disease. Cell, 2012. 149(6): p. 1192- 205.
19) Koo, B.K., et al., Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 2012. 488(7413): p. 665-9.
20) Li, V.S., et al., Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell, 2012. 149(6): p. 1245-56.
21) Schepers, A.G., et al., Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 2012. 337(6095): p. 730-5.
22) Clevers, H., The intestinal crypt, a prototype stem cell compartment. Cell, 2013. 154(2): p. 274-84.
23) Clevers, H. and E. Batlle, SnapShot: the intestinal crypt. Cell, 2013. 152(5): p. 1198-1198.e2.
24) Huch, M., et al., In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013. 494(7436): p. 247-50.
25) Stange, D.E., et al., Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 2013. 155(2): p. 357-68.
26) Behjati, S., et al., Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature, 2014. 513(7518): p. 422-425.
27) Clevers, H., K.M. Loh, and R. Nusse, Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 2014. 346(6205): p. 1248012.
28) Gao, D., et al., Organoid cultures derived from patients with advanced prostate cancer. Cell,
2014. 159(1): p. 176-187.
29) Karthaus, W.R., et al., Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014. 159(1): p. 163-175.
30) Kaukua, N., et al., Glial origin of mesenchymal stem cells in a tooth model system. Nature,
2014. 513(7519): p. 551-4.
31) Liu, X., et al., Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature, 2014. 507(7493): p. 513-8.
32) Ritsma, L., et al., Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature, 2014. 507(7492): p. 362-365.
33) Boj, S.F., et al., Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015. 160(1-2): p. 324-38.
34) Clevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319- 20.
35) D'Astolfo, D.S., et al., Efficient intracellular delivery of native proteins. Cell, 2015. 161(3): p. 674-690.
36) Dow, L.E., et al., Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer. Cell, 2015. 161(7): p. 1539-1552.
37) Drost, J., et al., Sequential cancer mutations in cultured human intestinal stem cells. Nature,
2015. 521(7550): p. 43-7.
38) Grün, D., et al., Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature, 2015. 525(7568): p. 251-5.
39) Huch, M., et al., Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015. 160(1-2): p. 299-312.
40) Sato, T. and H. Clevers, SnapShot: Growing Organoids from Stem Cells. Cell, 2015. 161(7): p. 1700-1700.e1.
41) van de Wetering, M., et al., Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015. 161(4): p. 933-45.
42) Blokzijl, F., et al., Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016. 538(7624): p. 260-264.
43) Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.
44) Farin, H.F., et al., Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature, 2016. 530(7590): p. 340-3.
45) Gjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature,
2016. 539(7630): p. 560-564.
46) Karin, M. and H. Clevers, Reparative inflammation takes charge of tissue regeneration. Nature,
2016. 529(7586): p. 307-15.
47) Beumer, J. and H. Clevers, How the Gut Feels, Smells, and Talks. Cell, 2017. 170(1): p. 10-11.
48) Bredenoord, A.L., H. Clevers, and J.A. Knoblich, Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017. 355(6322).
49) Drost, J., et al., Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science, 2017. 358(6360): p. 234-238.
50) Janda, C.Y., et al., Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature, 2017. 545(7653): p. 234-237.
51) Lasrado, R., et al., Lineage-dependent spatial and functional organization of the mammalian
enteric nervous system. Science, 2017. 356(6339): p. 722-726.
52) Naxerova, K., et al., Origins of lymphatic and distant metastases in human colorectal cancer. Science, 2017. 357(6346): p. 55-60.
53) Nusse, R. and H. Clevers, Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017. 169(6): p. 985-999.
54) Chakrabarti, R., et al., Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science, 2018. 360(6396).
55) Dijkstra, K.K., et al., Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell, 2018. 174(6): p. 1586-1598.e12.
56) Hu, H., et al., Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell, 2018. 175(6): p. 1591-1606.e19.
57) Roerink, S.F., et al., Intra-tumour diversification in colorectal cancer at the single-cell level. Nature, 2018. 556(7702): p. 457-462.
58) Sachs, N., et al., A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell, 2018. 172(1-2): p. 373-386.e10.
59) Crosby, P., et al., Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell, 2019. 177(4): p. 896-909.e20.
60) Gehart, H., et al., Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping. Cell, 2019. 176(5): p. 1158-1173.e16.
61) Tuveson, D. and H. Clevers, Cancer modeling meets human organoid technology. Science,
2019. 364(6444): p. 952-955.
62) Wang, H., et al., Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell, 2019. 178(1): p. 135-151.e19.
63) Battich, N., et al., Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science, 2020. 367(6482): p. 1151-1156.
64) Beumer, J., et al., High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell, 2020. 181(6): p. 1291-1306.e19.
65) Boersma, S., et al., Translation and Replication Dynamics of Single RNA Viruses. Cell, 2020.
66) Caffa, I., et al., Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 2020. 583(7817): p. 620-624.
67) Caffa, I., et al., Author Correction: Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 2020.
68) Lamers, M.M., et al., SARS-CoV-2 productively infects human gut enterocytes. Science, 2020. 369(6499): p. 50-54.
69) Nikolaev, M., et al., Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020. 585(7826): p. 574-578.
70) Pleguezuelos-Manzano, C., et al., Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature, 2020. 580(7802): p. 269-273.
71) Post, Y., et al., Snake Venom Gland Organoids. Cell, 2020. 180(2): p. 233-247.e21.
72) Rajewsky, N., et al., LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020. 587(7834): p. 377-386.
73) Wang, D., et al., Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr(+) Progenitors. Cell, 2020. 180(6): p. 1198-1211.e19.