All 522 samples of KIRC were initially divided into two groups according to the median expression of SLC17A9, and the ‘‘limma’’ package was then used to obtain the differential expressed genes (DEGs) related to SLC17A9, with adjusted p < 0.05 and log2|FC| > 1.
前人已经证明过 SLC17A9 could positively regulate cell proliferation ,所以可以侧面验证这个推断所合理的,然后作者又聚焦了EMT这个明星通路,所以看了看 SLC17A9 and four EMT markers (namely, CDH1, CDH2, SNAI1, and VIM) 的具体的表达量相关性散点图。
当然了,因为前面的差异分析有统计学阈值,所以也可以确定下 differentially expressed genes (DEGs) between the SLC17A9 high expression group and low expres- sions group,然后对上下调基因分别去做超几何分布检验看生物学功能情况。
下面是一个示例代码:
# exp 是一个表达量矩阵 # 然后this_gene 是 目标基因 Group = ifelse(exp[ this_gene ,] > median(exp[ this_gene ,]),'high','low') table(Group) # 需要把Group转换成因子,并设置参考水平,指定levels,对照组在前,处理组在后 Group = factor(Group,levels = c("low","high")) Group table(Group)