首页   

刚刚,DeepSeek开源DeepEP通信库,千亿MoE训推颠覆级创新!FP8狂飙,带飞GPU

新智元  · AI  · 昨天

主要观点总结

本文介绍了DeepSeek开源的第二弹产品DeepEP的特点和用法,包括其在AI领域的创新方式和潜在影响。DeepEP是一个专为混合专家系统(MoE)和专家并行(EP)设计的通信库,具有高吞吐量和低延迟的GPU全互联内核。它支持NVLink和RDMA高吞吐量内核用于训练和推理预填充,以及低延迟推理解码内核。

关键观点总结

关键观点1: DeepEP的特点

DeepEP是一个专为混合专家系统和专家并行设计的通信库,具有高吞吐量和低延迟的GPU全互联内核。它支持NVLink和RDMA技术,可用于加速训练和推理任务。DeepEP还包括一系列针对延迟敏感任务的纯RDMA实现的内核,以及基于回调机制的通信-计算重叠方法。

关键观点2: DeepEP的安装和环境要求

DeepEP的安装需要NVIDIA的Hopper GPU、Python 3.8及以上版本、CUDA 12.3及以上版本和PyTorch 2.1及以上版本。此外,还需要NVSHMEM依赖,详细步骤可参考NVSHMEM安装指南。

关键观点3: DeepEP的使用示例

文章提供了使用DeepEP进行模型训练或推理预填充的示例代码,包括调度(dispatch)和组合(combine)功能的实现。此外,还介绍了低延迟内核在推理解码应用中的使用方法。

关键观点4: DeepEP的性能表现和网络配置

DeepEP已在InfiniBand网络上完成全面测试,并展示了良好的性能表现。它还支持自适应路由和拥塞控制等网络配置,可根据不同的应用场景进行优化。


正文



  新智元报道  

编辑:编辑部
【新智元导读】DeepSeek开源第二弹如期而至。这一次,他们把MoE训推EP通信库DeepEP开源了,支持FP8专为Hopper GPU设计,低延迟超高速训练推理。

刚刚,DeepSeek放出了开源第二弹——DeepEP!

它拥有高效优化的all-to-all通信,并具有以下特点:

  • 内部节点和节点间均支持NVLink和RDMA

  • 高吞吐量内核用于训练和推理预填充

  • 低延迟推理解码内核

  • 本地FP8调度支持

  • 可灵活控制的GPU资源,用于计算-通信重叠

具体来说,DeepEP是一个专为混合专家系统(MoE)和专家并行(EP)设计的通信库。

它提供高吞吐量和低延迟的GPU全互联内核,也被称为MoE的「调度」和「组合」操作。该库还支持低精度运算,包括FP8格式。

DeepEP开源不过一个小时,GitHub星标冲破1.5k,还在飚速增长。

项目地址:https://github.com/deepseek-ai/DeepEP

为了配合DeepSeek-V3论文中提出的群组限制门控算法,DeepEP提供了一系列针对不同网络域之间带宽转发的优化内核,例如将数据从NVLink高速互联域转发到RDMA远程直接内存访问域。

这些内核具有高吞吐量,适用于模型训练和推理预填充(预先计算)任务。此外,它们还支持对流式多处理器(SM)数量的精确控制。

针对对延迟敏感的推理解码任务,DeepEP包含了一组纯RDMA实现的低延迟内核,以最小化延迟。

该库还引入了一种基于回调机制的通信-计算重叠方法,这种方法不会占用任何SM资源。

DeepSeek强调:本库中的实现可能与DeepSeek-V3论文有些细微差异。

一位软件工程师激动地表示,「DeepSeek在MoE模型上所达到的优化水平,令人印象深刻,因为MoE模型因其规模和复杂性而广为人知,难度非常大。而DeepEP能够如此精确地处理这些问题,使用像NVLink和RDMA这样的先进硬件,并且支持FP8,真是太牛了」。

还有网友称,这是业界第一款MoE模型训练和推理通信库。

DeepEP的这种创新方法,或将改变AI领域的沟通方式。从此,AI开发者也许能有效突破大规模AI模型的界限。

左右滑动查看

英伟达未列「特殊指令」,被DeepSeek意外挖掘

为了提高性能,DeepSeek开发者意外发现,一条在官方文档中「没有列出」的特殊指令——ld.global.nc.L1::no_allocate.L2::256B。
这条指令会让GPU访问内存的方式更高效。
但是,这条指令会导致未定义的行为,因为它使用了.nc修饰符,这会在访问GPU内存时造成一致性问题。
不过,在某些特定的Hopper架构硬件上,使用.L1::no_allocate修饰符时,经过测试这条指令是安全的,而且性能得到显著提升。
有网友突然发现了这个华点——这是非常「硬核」的编码,完全是那种黑客风格的操作,彻底跪了。
随后,OpenAI华人研究员Clive Chan和网友「main」找到了英伟达CUDA的官方文档,发现在2024年9月时已被收录。
不过,他又婉转地表示,这个发现依旧令人惊叹,任何能够理解CUDA内存模型的人,都值得尊敬。
DeepSeek称,如果在其他平台上使用时遇到问题,可以通过在setup.py中设置DISABLE_AGGRESSIVE_PTX_INSTRS=1来禁用这条指令,或者报告问题。
为了在集群上获得更好的性能,建议运行所有的测试,并使用自动调优后的最佳配置。默认配置已经针对 DeepSeek 的内部集群进行了优化。

性能表现

支持NVLink和RDMA转发的普通内核

研究人员使用H800(配备NVLink技术,最大带宽可达160 GB/s)进行标准内核测试,每张显卡均连接CX7 InfiniBand RDMA网络卡(400 Gb/s,最大带宽可达50 GB/s)。

测试采用DeepSeek-V3/R1预训练配置:每批处理4096个token,隐藏层维度为7168,采用top-k组选择(k=4)和top-k专家选择(k=8),并使用FP8格式进行调度运算,BF16格式进行组合运算。

纯RDMA低延迟内核测试

他们使用H800测试低延迟内核,每张显卡均连接CX7 InfiniBand RDMA(远程直接内存访问)网络卡(400 Gb/s,最大带宽可达50 GB/s)。

测试采用典型的DeepSeek-V3/R1生产配置:每批处理128个token,隐藏层维度为7168,采用top-k专家选择(k=8),并使用FP8格式进行调度运算,BF16格式进行组合运算。

快速入门

环境要求

  • 英伟达Hopper GPU(未来可能支持更多架构或设备)

  • Python 3.8及以上版本

  • CUDA 12.3及以上版本

  • PyTorch 2.1及以上版本

  • NVLink高速互联技术(用于单机多卡通信)

  • RDMA网络(用于多机分布式通信)

下载并安装NVSHMEM依赖

DeepEP依赖于DeepSeek定制修改的NVSHMEM版本。详细步骤可参考NVSHMEM安装指南:

https://github.com/deepseek-ai/DeepEP/blob/main/third-party/README.md

开发

下面代码片段用于构建并测试一个集成NVSHMEM的Python包:

# Build and make symbolic links for SO filesNVSHMEM_DIR=/path/to/installed/nvshmem python setup.py build# You may modify the specific SO names according to your own platformln -s build/lib.linux-x86_64-cpython-38/deep_ep_cpp.cpython-38-x86_64-linux-gnu.so
# Run test cases# NOTES: you may modify the `init_dist` function in `tests/utils.py`# according to your own cluster settings, and launch into multiple nodes python tests/test_intranode.pypython tests/test_internode.pypython tests/test_low_latency.py
安装
NVSHMEM_DIR=/path/to/installed/nvshmem python setup.py install


然后,在你的Python项目中导入deep_ep,就可以使用啦!

网络配置

DeepEP已在InfiniBand网络上完成全面测试。理论上,它也兼容融合以太网RDMA(RoCE)。

流量隔离

InfiniBand通过虚拟通道(VL)支持流量隔离。

为防止不同类型流量之间的干扰,团队建议按以下方式将计算任务分配到不同的虚拟通道:

  • 使用常规内核的计算任务

  • 使用低延迟内核的计算任务

  • 其他计算任务

对于DeepEP,可以通过设置NVSHMEM_IB_SL环境变量,来控制虚拟通道分配。

自适应路由

自适应路由是InfiniBand交换机提供的高级路由功能,可以在多个路径间均匀分配流量。

目前,低延迟内核支持自适应路由,而常规内核暂不支持(即将添加支持)。在常规节点间内核上启用自适应路由,可能导致死锁(deadlock)或数据损坏问题。

对于低延迟内核,启用自适应路由可以完全消除由路由冲突引起的网络拥塞,但也会引入额外延迟。

团队建议采用以下配置以获得最佳性能:

  • 在网络负载较重的环境中启用自适应路由

  • 在网络负载较轻的环境中使用静态路由

拥塞控制(Congestion Control)

由于在生产环境中未观察到明显拥塞,因此禁用了拥塞控制功能。

接口和示例

模型训练或推理预填充示例

常规内核可用于模型训练或推理预填充阶段(预计算阶段,不包含反向传播部分),如下面的示例代码所示。

这段代码实现了一个基于PyTorch的分布式混合专家(MoE)模型的分发与组合功能,支持前向和反向传播的通信与计算重叠优化。

import torchimport torch.distributed as distfrom typing import List, Tuple, Optional, Union
from deep_ep import Buffer, EventOverlap
# Communication buffer (will allocate at runtime)_buffer: Optional[Buffer] = None
# Set the number of SMs to use# NOTES: this is a static variableBuffer.set_num_sms(24)

# You may call this function at the framework initializationdef get_buffer(group: dist.ProcessGroup, hidden_bytes: int) -> Buffer: global _buffer
# NOTES: you may also replace `get_*_config` with your auto-tuned results via all the tests num_nvl_bytes, num_rdma_bytes = 0, 0 for config in (Buffer.get_dispatch_config(group.size()), Buffer.get_combine_config(group.size())): num_nvl_bytes = max(config.get_nvl_buffer_size_hint(hidden_bytes, group.size()), num_nvl_bytes) num_rdma_bytes = max(config.get_rdma_buffer_size_hint(hidden_bytes, group.size()), num_rdma_bytes)
# Allocate a buffer if not existed or not enough buffer size # NOTES: the adaptive routing configuration of the network **must be off** if _buffer is None or _buffer.group != group or _buffer.num_nvl_bytes < num_nvl_bytes or _buffer.num_rdma_bytes < num_rdma_bytes: _buffer = Buffer(group, num_nvl_bytes, num_rdma_bytes) return _buffer

def get_hidden_bytes(x: torch.Tensor) -> int: t = x[0] if isinstance(x, tuple) else x return t.size(1) * max(t.element_size(), 2)

def dispatch_forward(x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], topk_idx: torch.Tensor, topk_weights: torch.Tensor, num_experts: int, previous_event: Optional[EventOverlap] = None) -> \ Tuple[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], torch.Tensor, torch.Tensor, List, Tuple, EventOverlap]: # NOTES: an optional `previous_event` means a CUDA event captured that you want to make it as a dependency # of the dispatch kernel, it may be useful with communication-computation overlap. For more information, please # refer to the docs of `Buffer.dispatch` global _buffer
# Calculate layout before actual dispatch num_tokens_per_rank, num_tokens_per_rdma_rank, num_tokens_per_expert, is_token_in_rank, previous_event = \ _buffer.get_dispatch_layout(topk_idx, num_experts, previous_event=previous_event, async_finish=True, allocate_on_comm_stream=previous_event is not None) # Do MoE dispatch # NOTES: the CPU will wait for GPU's signal to arrive, so this is not compatible with CUDA graph # For more advanced usages, please refer to the docs of the `dispatch` function recv_x, recv_topk_idx, recv_topk_weights, num_recv_tokens_per_expert_list, handle, event = \ _buffer.dispatch(x, topk_idx=topk_idx, topk_weights=topk_weights, num_tokens_per_rank=num_tokens_per_rank, num_tokens_per_rdma_rank=num_tokens_per_rdma_rank, is_token_in_rank=is_token_in_rank, num_tokens_per_expert=num_tokens_per_expert, previous_event=previous_event, async_finish=True, allocate_on_comm_stream=True) # For event management, please refer to the docs of the `EventOverlap` class return recv_x, recv_topk_idx, recv_topk_weights, num_recv_tokens_per_expert_list, handle, event

def dispatch_backward(grad_recv_x: torch.Tensor, grad_recv_topk_weights: torch.Tensor, handle: Tuple) -> \ Tuple[torch.Tensor, torch.Tensor, EventOverlap]: global _buffer
# The backward process of MoE dispatch is actually a combine # For more advanced usages, please refer to the docs of the `combine` function combined_grad_x, combined_grad_recv_topk_weights, event = \ _buffer.combine(grad_recv_x, handle, topk_weights=grad_recv_topk_weights, async_finish=True)
# For event management, please refer to the docs of the `EventOverlap` class return combined_grad_x, combined_grad_recv_topk_weights, event

def combine_forward(x: torch.Tensor, handle: Tuple, previous_event: Optional[EventOverlap] = None) -> \ Tuple[torch.Tensor, EventOverlap]: global _buffer
# Do MoE combine # For more advanced usages, please refer to the docs of the `combine` function combined_x, _, event = _buffer.combine(x, handle, async_finish=True, previous_event=previous_event, allocate_on_comm_stream=previous_event is not None)
# For event management, please refer to the docs of the `EventOverlap` class return combined_x, event

def combine_backward(grad_combined_x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], handle: Tuple, previous_event: Optional[EventOverlap] = None) -> \ Tuple[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], EventOverlap]: global _buffer
# The backward process of MoE combine is actually a dispatch # For more advanced usages, please refer to the docs of the `combine` function grad_x, _, _, _, _, event = _buffer.dispatch(grad_combined_x, handle=handle, async_finish=True, previous_event=previous_event, allocate_on_comm_stream=previous_event is not None)
# For event management, please refer to the docs of the `EventOverlap` class return grad_x, event

此外,在调度函数(dispatch function)内部,可能无法预知当前进程(rank)需要接收的具体token数量。

如下图所示,这种情况下系统会采用CPU同步等待机制,等待GPU返回接收完成的计数信号。

推理解码(Inference Decoding)应用示例

在模型推理的解码阶段,可以使用低延迟内核(专为实时推理优化)来提升性能。

具体使用方法请参考以下示例代码:

这段代码实现了一个低延迟模式的分布式混合专家(MoE)模型的分发与组合功能,支持PyTorch和CUDA图优化,适用于高效推理。

import torchimport torch.distributed as distfrom typing import Tuple, Optional
from deep_ep import Buffer
# Communication buffer (will allocate at runtime)# NOTES: there is no SM control API for the low-latency kernels_buffer: Optional[Buffer] = None

# You may call this function at the framework initializationdef get_buffer(group: dist.ProcessGroup, num_max_dispatch_tokens_per_rank: int, hidden: int, num_experts: int) -> Buffer: # NOTES: the low-latency mode will consume much more space than the normal mode # So we recommend that `num_max_dispatch_tokens_per_rank` (the actual batch size in the decoding engine) should be less than 256 global _buffer num_rdma_bytes = Buffer.get_low_latency_rdma_size_hint(num_max_dispatch_tokens_per_rank, hidden, group.size(), num_experts)
# Allocate a buffer if not existed or not enough buffer size if _buffer is None or _buffer.group != group or not _buffer.low_latency_mode or _buffer.num_rdma_bytes < num_rdma_bytes: # NOTES: for best performance, the QP number **must** be equal to the number of the local experts assert num_experts % group.size() == 0 _buffer = Buffer(group, 0, num_rdma_bytes, low_latency_mode=True, num_qps_per_rank=num_experts // group.size()) return _buffer

def low_latency_dispatch(hidden_states: torch.Tensor, topk_idx: torch.Tensor, num_max_dispatch_tokens_per_rank: int, num_experts: int): global _buffer
# Do MoE dispatch, compatible with CUDA graph (but you may restore some buffer status once you replay) recv_hidden_states, recv_expert_count, handle, event, hook = \ _buffer.low_latency_dispatch(hidden_states, topk_idx, num_max_dispatch_tokens_per_rank, num_experts, async_finish=False, return_recv_hook=True)
# NOTES: the actual tensor will not be received only if you call `hook()`, # it is useful for double-batch overlapping, but **without any SM occupation** # If you don't want to overlap, please set `return_recv_hook=False` # Later, you can use our GEMM library to do the computation with this specific format return recv_hidden_states, recv_expert_count, handle, event, hook

def low_latency_combine(hidden_states: torch.Tensor, topk_idx: torch.Tensor, topk_weights: torch.Tensor, handle: Tuple): global _buffer
# Do MoE combine, compatible with CUDA graph (but you may restore some buffer status once you replay) combined_hidden_states, event_overlap, hook = \ _buffer.low_latency_combine(hidden_states, topk_idx, topk_weights, handle, async_finish=False, return_recv_hook=True)
# NOTES: the same behavior as described in the dispatch kernel return combined_hidden_states, event_overlap, hook

关于两个micro-batch的重叠处理机制,请参考下图。

团队实现的接收钩子(receiving hook)接口,允许RDMA网络通信在后台进行,这种设计不会占用GPU SM的计算资源。

需要注意的是,重叠部分的时间可以灵活调整,因为注意力计算(attention)、调度(dispatch)、混合专家(MoE)和组合(combine)这四个处理阶段的执行时间可能并不相同。

因此,可以根据具体的计算任务特点来调整各个阶段的配置参数,以获得最优性能。

参考资料:
https://x.com/deepseek_ai/status/1894211757604049133




© 2024 精读
删除内容请联系邮箱 2879853325@qq.com