首页   

小升初数学经典10大压轴题型,期末前练习提升

小学数学  · 数学  · 4 天前

主要观点总结

本文介绍了十种常见的数学问题类型,包括列方程问题、最值问题、公约公倍问题、抽屉原则问题、幻方问题、构图布数问题、溶液浓度问题、存款利率问题、商品利润问题和方阵问题。针对每种问题,文章给出了数量关系、解题思路和方法,以及相应的例题。文章旨在帮助学生更好地理解和掌握这些数学问题类型的解法。

关键观点总结

关键观点1: 数学问题类型介绍

文章介绍了十种常见的数学问题类型,包括列方程问题、最值问题、公约公倍问题等。

关键观点2: 数量关系

每种问题都有特定的数量关系,如列方程问题的等号两边数量相等,最值问题需要求出最大值或最小值等。

关键观点3: 解题思路和方法

文章给出了针对每种问题的解题思路和方法,包括公式应用、图形分析、逻辑推理等。

关键观点4: 例题解析

文章提供了多个例题,通过解析例题,帮助读者更好地理解解题思路和方法。

关键观点5: 实用性强

文章的内容实用性强,有助于读者解决日常生活中遇到的数学问题。


正文

一、列方程问题


【数量关系】 方程的等号两边数量相等。

【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。

例题:甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?

第一种方法:设乙班有Χ人,则甲班有(90-Χ)人。
找等量关系:甲班人数=乙班人数×2-30人。
列方程:90-Χ=2Χ-30
解方程得 Χ=40 从而知 90-Χ=50

第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。
列方程 (2Χ-30)+Χ=90
解方程得 Χ=40 从而得知 2Χ-30=50

答:甲班有50人,乙班有40人。

二、最值问题


【数量关系】 一般是求最大值或最小值。

【解题思路和方法】 按照题目的要求,求出最大值或最小值。

例题:在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。

答:最少需要9分钟。


三、公约公倍问题

【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。

【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。

例题:一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?
解 硬纸板的长和宽的最大公约数就是所求的边长。
60和56的最大公约数是4。

答:正方形的边长是4厘米。

四、抽屉原则问题


【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。

抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。

通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。

【解题思路和方法】 (1)改造抽屉,指出元素;
(2)把元素放入(或取出)抽屉;
(3)说明理由,得出结论。

例:家家乐学校有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?

解 由于2000年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。 这说明至少有2个学生的生日是同一天的。

五、幻方问题


【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。
三级幻方的幻和=45÷3=15
五级幻方的幻和=325÷5=65

【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。

六、构图布数问题


【数量关系】 根据不同题目的要求而定。

【解题思路和方法 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。

例题:十棵树苗子,要栽五行子,每行四棵子,请你想法子。
解 符合题目要求的图形应是一个五角星。
4×5÷2=10
因为五角星的5条边交叉重复,应减去一半。

七、溶液浓度问题


【数量关系】 溶液=溶剂+溶质

浓度=溶质÷溶液×100%

【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例题:爷爷有16%的糖水50克
(1)要把它稀释成10%的糖水,需加水多少克?
(2)若要把它变成30%的糖水,需加糖多少克?

解:(1)需要加水多少克?50×16%÷10%-50=30(克)
(2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克)

答:(1)需要加水30克
(2)需要加糖10克。

八、存款利率问题


【数量关系】 年(月)利率=利息÷本金÷存款年(月)数×100%
利息=本金×存款年(月)数×年(月)利率
本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数]

【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例题:李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。

解 因为存款期内的总利息是(1488-1200)元,
所以总利率为 (1488-1200)÷1200 又因为已知月利率,
所以存款月数为 (1488-1200)÷1200÷0.8%=30(月)

答:李大强的存款期是30月即两年半。

九、商品利润问题(又叫盈亏问题)


【数量关系】 利润=售价-进货价
利润率=(售价-进货价)÷进货价×100%
售价=进货价×(1+利润率)
亏损=进货价-售价
亏损率=(进货价-售价)÷进货价×100%

【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。

例题:某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?

解:设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了
1-(1+10%)×(1-10%)=1%

答:二月份比原价下降了1%。

十、方阵问题


数量关系】 (1)方阵每边人数与四周人数的关系:
四周人数=(每边人数-1)×4
每边人数=四周人数÷4+1

(2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数
空心方阵:总人数=(外边人数)-(内边人数)
内边人数=外边人数-层数×2

(3)若将空心方阵分成四个相等的矩形计算,则:
总人数=(每边人数-层数)×层数×4

#往期推荐#

9种常见的“求图形阴影面积”方法

2024-12-15

小学1-6年级数学应用题分类专项训练,期末复习超实用!

2024-12-14

小学1-6年级奥数知识点总结(十二类型),家长收藏

2024-12-13

小学数学 综合整理 ▍

综合整理自网络 声明 
商务合作微信:JJYYshangwu  
//


免责声明

1.本公众号部分转载的文章、图文、视频来自网络,其版权和文责属原作者所有,若来源标注错误或侵犯到您的权益,烦请告知,我们将立即删除。
2.本公众号编辑部工作人员的原创文章,其版权属于我们微信公众号所属主体。
3.本公众号特约稿原创文章,其版权和文责属作者所有。
4.若要转载原创文章用于商业用途,请联系我们,未经同意不得转载。任何转载请注明文章来源。如有问题,请联系我们,谢谢!


© 2024 精读
删除内容请联系邮箱 2879853325@qq.com